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SUWIMARY 

The author has previously used the stochastic model of 

radiativt transfer to obtain the diffusion matrix consisting 

of the reflectance and the transmittance operators in a finite 

plane-parallel atmosphere of arbitrary stratification. When 

this method is applied to the distribution of emission sources 

within the medium, the emergent intensities can be computed 

without actually solving the equation of transfer. 

In the present paper, using auxiliary equations in 

conjunction with the Milne integral equations, the author 

derives the diffusion matrix along with the extension 

concerning the Neumann solution as given by Busbridge.  In the 

case of diffuse reflection and transmission of parallel rays, 

the solutions are expressed in terms of a pair of scattering 

and transmission functions for each of the two boundaries of 

the atmosphere. Then these global functions are given by X 

and Y  functions that are equal to those previously found by 

Bellman and Kalaba. Whereas the diffusion matrix formally has 

a somewhat similar appearance to a map yielded by Preisendorfer, 

the mathematical development is different. 

If the optical properties of the medium are constant 

throughout the atmosphere, the reflectance and transmittance 

operators obtained here reduce to those given by Sobolev. 
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'ON THE DIFFUSION MATRIX OF RADIATIVE TRANSFER 

I.  INTRODUCTION 

In 1942 Ambarzumian [l] published a mathematical method 

for solving the homogeneous first Integral equation of Milne. 

Basing his work on the Idea of linear aggregation, he reduced 

the solution of the Milne equation to that of Its auxiliary 

equation, which In turn leads directly to tin H equation (see 

Kourganoff [22]). in a second paper, Ambarzumian [2] treated 

the same problem from a physical viewpoint. By means of the 

principle, of Invarlance, he obtained a nonlinear Integral 

equation In the H function directly through physical analysis 

of the diffuse reflection and transmission of light, without 

actually solving the homogeneous Milne equation for the source 

function.  Ingeniously extending the Invarlance method, 

Chandrasekhar [15] formulated a complete set of principles of 

Invarlance In a finite homogeneous atmosphere and applied it 

to various transfer problems. The requisite Integral equations 

for the scattering and transmission functions were derived from 

the above set of Invarlance principles in connection with the 

equation of transfer. 

By means of the Ambarzumian technique, the solution of the 

nonhomogeneous Milne equation can be expressed in terms of the 

H function for certain special forms of the distribution of 

emission sources acting In the medium. The technique plays an 

Important role In the solutions of transfer problems from the 

practical viewpoint. Furthermore, as Busbrldge [23] emphasized. 
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the technique becomee more powerful when It Is connected with 

the theory of the N solution. The auxiliary equation for any 

given problem reduces to the first Integral equation of Milne 

for the diffuse reflection and transmission of a parallel bean 

of radiation by a finite layer. From the mathematical point of 

view, the Ambarzumlan technique was Ingeniously extended by 

Busbrldge [12,13] and was applied to various transfer problems 

of astrophyslcal Interest by Busbrldge [12,13j and Ueno [29J. 

Ambarzumlari's physical method based on the principle of 

Invarlance has been applied by Busbrldge [11,14] and Stlbbs 

[14,25] to problems of line formation In the Mllne-Eddlngton 

model with coherent and noncoherent scattering. 

Recently, developing the Idea of the Invarlance principle 

of Ambarzumlan [2], Bellman and Kalaba [j] stated the 

principle of Invariant Imbedding. The functional relationships 

among the members of the class are found by Imbedding the 

original process within a family of processes of similar nature 

and obtaining an Invariant process. Whereas the classical 

approaches reduce problems to the solutions of systems of 

linear equations, the Invariant-Imbedding technique reduces 

problems to the Iteration of nonlinear transformations. The 

principle of Invariant imbedding led not only to new 

analytical functions of radiative transfer (Bellman and Kalaba 

[2,3]), neutron diffusion (Bellman, Kalaba, and Wing [8,10]), 

random walk and scattering (Bellman and Kalaba [6]), adaptive 

processes and random transmission (Bellman and Kalaba [7]), and 



.  RM-2744-ARPA 

3 

problems of Stefan type (Bellman and Kalaba [9])» but also to 

those of wave propagation (Bellman and Kalaba [5])« 

By means of the Chandrasekhar-Wlck method, and with the 

aid of Chandrasekhar's extension'of the physical method based 

on the invariance principle, the following kinds of transfer 

problems have been solved: line formation in planetary atmos- 

phere (Chandrasekhar [15]),  line formation in the Schuster 

model (Chandrasekhar [15])* emitting atmosphere (Horak [18], 

Horak and Lundquist [19]), and molecular absorbing atmosphere 

(King [21]). 

Allowing for the map consisting of complete reflectance 

and complete transmittance operators in inhomogeneous one- 

parameter carrier space, Preisendorfer [23] obtained the 

Invariant imbedding relation for radiative transfer and 

neutron transport contexts. Furthermore, the functional 

relations for reflectance and transmittance operators were 

derived in a manner similar to that used by Chandrasekhar for 

the homogeneous case [24]. The polarity of the two operators 

is elucidated because of the inhomogeneous optical properties 

of the medium. 

In recent years, introducing the probability concept into 

the theory of radiative theory, Sobolev 12?] has treated many 

subjects from the statistical point of view, including various 

kinds of transfer problems: pure scattering [27],  line 

formation with coherent and noncoherent scattering in a semi- 

infinite homogeneous medium [27], diffuse reflection in a 

semi—infinite Inhomogeneous medium.[26], diffuse reflection in 

a finite homogeneous medium [28], and others [27]. 
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Recently, assuming that multiple scattering of a photon 

as the carrier of radiant energy Is a random process of 

Markovlan type, Ueno used a stochastic approach In the study 

of various problems of radiative transfer! Milne's problem 

[JO], line formation In serai-Infinite atmospheres with coherent 

and noncoherent scattering [31,32], diffuse reflection and 

transmission In a finite homogeneous and Inhomogeneous layer 

[33*3^1* and a Markovlan property of radiative transfer [35]. 

Through the probabilistic technique, the intcgro-differentlal 

equation for the emission probability distribution can be ' 

derived from the Chapman-Kolmogoroff equation, and the integral 

transform of the probabilistic equation can be used to obtain 

the angular distributions of the emergent radiations without 

actually solving the equation of transfer. It is of interest 

to mention that the derivation of the S and T functions 

from the probablliatic equation by the stochastic approach is 

similar in part to that used recently by Feller [16] on 

boundaries and lateral conditions for the Kolmogoroff 

differential equation. 

In a preceding paper [37], based on a stochastic model of 

radiative transfer, the author obtained the diffution matrix 

consisting of reflectance and transmlttanoe operators.  In the 

present paper, however, we derive the diffusion matrix from the 

auxiliary Equations that play a major role in the Ambarzumiari 

technique in connection with the Milne equations (cf. Kopf [171, 

Busbridge [13]). In subsequent papers, the diffusion matrix 
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will be applied to the various transfer problems of current 

interest in a finite inhomogeneous medium. 

Whereas, in the context of the operational form, the map 

due to Preisendorfer [25] seems to be somewhat similar to the 

diffusion matrix, the mathematical procedure is different. In 

contrast to Prelsendorfer's approach, which can be patterned 

after the p rocedure used by Chandrasekhar for a finite homo- 

geneous atmosphere, our technique Is based on the use of 

auxiliary equations for the source functions. 

Finally, it should be mentioned that, In addition to the 

methods stated above, the Laplace-transform method (see Hopf 

[17], Kourganoff [22], Huang [22 ], and Busbrldge [l?]) is also 

used in transfer problems. 

II. THE EQUrtTION OF TRANSFER 

Let IV(TV,H) be the specific Intensity of v radiation 

at the optical depth TV in the direction cos M-. In con- 

sidering the transfer problem of radiation in a plane-parallel 

inhomogeneous atmosphere of finite optical thickness T ,, 
v j 1 

for simplicity we shall restrict our discussion to coherent * 

and Isotropie scattering. Then, for convenience, we suppressed 

the subscript v of the various quantities. 

The equation of transfer appropriate to the present case 

is written in the form 

(2.1)    ^ dl^xi , I(T R) _ j(Th 

where the source function J(T) is 
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(2.2)    J(T)-JW(T)J   l(T,n')dH' + 31(T). 
+1 

-1 

In equation (2.2), W(T) la the albedo for single scattering, 

and .BJ'T) 1B the distribution of emission sources within . 

the atmosphere. 

Following the notation of Chandrasekhar In [15J, we shall 

denote the Intensity of radiation at the level T directed 

toward the surface T » 0 by I(T,+ H), 0 < H £ 1, and that 

directed toward the surface t ■ T. by I(T>— \I),    0 < Ji <[ 1. 

Let radiation of Intensity 1(0,- \i),    0 < »i.^ !# be Incident 

on the surface T « 0 In the direction - n, and let radiation 

of Intensity I(T1,+ \I),    0 < H < 1, be Incident similarly on 
t 

the surface T - ^ In the direction + \i. 

Then, allowing for the formal solution of equation (2.1) 

subject to the boundary conditions given above, namely; 

{2.3) I(T,+ U) - I(T1,+ n)exp(- ^j^) 

+ /TlJ(t)exp(-^)^, 
T 

{2 A) I(T,-H) - 1(0,- Ji)er.p(-1) 

+ /T J(t)exp(-I~i)^, 

from (2.1) we get the first Integral equation of Milne 

governing J(T): 
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(2.5)    [1 - w(T)AL(J<t)J « B(T), 

where 1 Is the identity operator, 7i    1B the truncated Hopf 

operator 

(2.6) AT{f(t)) -|J"Tl ^tJ^dt-tDdt, 
0 

and B(.T) Is 

(2.7) B(T) - B1(T) + | W(T) ^  1(0,- H')exp(- jjr)dn' 

0 

+ | W(T) j  I^^-t- n')exp(- ^i  )dn'. 

0       .. 

In equation (2.5), E,(T) IS the first exponential Integral: 

(2.8) E^T) -J1 exp(-l)^. 
0 

While in the homogeneous case B(T) is a known function 

in any particular problem, the quantity B1(T) In the case of 

Inhomogeneoua distribution of emission sources is given by 

(2.9) hW'f    f    /Tl B:,(t,+ u)exp(-^-^)dt 
o    L T    . 

+ /  B^t,- n)exp(- ^-=-^)dt 

0 
■ 

III.  THE AUXILIARY EQUATIONS 

In the theory of radiative transfer based on the 

Ambarzumlan technique, the auxiliary equation plays an 

Important role. 
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In thö case of a finite Inhomogeneous atmosphere, the 

auxiliary equations are expressed In the forms 

(5.1) (1 - .w(T)Ä]TIp(H)t,T1)) - w(T)exp(- J), 

(3.2) tS - w(T)Ä]T(p*(Hjt,T1)) - w(T)exp(- 
1 ^ ). • 

Physically, the function p(M.iT,T1) corresponds to the 

source function due to a parallel beam of radiation incident 

on the surface T « 0 In the direction - M-, and p (Tjt,Tj) 

corresponds to that due to similar parallel rays on the sur- 

face T ■ T.  in the direction + ix. Prom the probabilistic 

viewpoint, the function P(M.JT,T1) represents the probability 

that a photon absorbed at the level T will reappear In the 

direction + M- as radiation emerging from the surface f ■ 0, 

and p (H;T,T,) is the probability that a photon absorbed at 

the level T will be reemltted in the direction — M. as 

radiation escaping from the surface T » T-. Mathematically, 

the probability pdxiT^T^dti is the probability of finding \i 

in the range (p.,}! + M») at the level T. 

On differentiating the auxiliary equations with respect 

to T«, after some argumeut we have 

öp(H;T,T1)  1 v r1 ♦.      vdU« 
(3.5)     ^ *- - J p(HiT1,Tx) J      p (li'it,^)^-, 

1 0 

Öp*(HiT,T1)      1  # 
(5.^)     p * | P (^iT,^) 

+ I P*(»i;T1,Ta) J        P*(»i,jT,T1)^-. 
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Equations (?0)"and (M) can also be obtained by means of the 

probabilistic method W)  and the Invariant ünbedding technique 

[36]. Furthermore, the solutions are found to depend on four 

functions X^^K ^^'  *^'    *"*    ^^'^    ^ 
are connected to each other by the principle of reciprocity 

(see [34]). Mathematically speaking, the source functions 

pW,^) and pVi^i) ^e .the N solutions of the 

auxiliary equations (j.l) and (3.2) (see Busbrldge lljl). 

IV.  DIFFUSION MATRIX 

With the aid of equations (2.3) and (2.4), the emergent 

intensities from the atmosphere l(0.+ n) and Uvv~ M-) are 

respectively provided by 

(4.1) 1(0,+ M.) - !(*!>+ ^)exp(- fr) + I (0'+ •*)» 

(4.2) I(T1,- ix) - 1(0,- H)exp(- -j^) + I (V- M.), 

where 

(4.3)       i*(o,+ti) «/ 1 J(t)exp(-^ir' 
0 
P Tn T, -• t J^ 

(4.4)    I*(T1,-^)«J 
1 J(t)exp( jj )-jr 

0 

" J  1 JC^i - t)exP(~ ^TT* 
0 

Following Busbrldge [131, we call equations (4.3) and (4.4) 

the T, transforms of J(T). 
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When 

(4.5) B(T) - aB1(T) + bB?(i1 - T)#- 

and 

(4.6) [1 - w(T)^]T(j
1(t)) -B^T), 

(4.7) [1 - w(t)7:]T(J
2(t)) - B^^ - T), 

then the solution.of equation (2.5) 1B written In the form 

(4.8) J(T) - aJ1(T) + bJ2(T). 

Furthermore, the emergent Intensities I (0,+ M-) and 

I (T™,— u) are given by 

(4.9) I*(0,+ H) - a/""1 J1(t)eXp(- |^ 
0 

+ b/Tl J2(t)exp(^)^ 
0 

(4.10) 1*{1V~ n) - a/Tl j:'-(t)exp(- \^)f 
0 

+ b/Tl J2(t)exp(-ir^)f. 

On multiplying equation (4.6) by P(M.;T,T1)/W(T)M. and 

Integrating with respect to T over (O^T,), we get 

(4.11) f Tl [p(".T,Ti)J_^| - p(n;T,T1)ÄT(j
1(t)) ]^ 

0 
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On the other hand. If we multiply equation (j.l) by 

J (T)/W(T)H and Integrate with respect to T over (0,T,), 

we get 

(4.12)   /' l [4[l|p(^T,Tl) - J
1(T)7CT(p(nJt,T1))]äI 

0 

-Z'1 J1(T)exp(-l)f. 
0 

Allowing for the eymmetrlcal property of the I operator 

(cf. Busbrldge [ij]), we have 

y,Ti f1(t)it(f2(f))dt -y,Ti f2{t)zt{f1(f))dt, 

and using equations (4.11) and (4.12), we obtain 

Similarly, using equations (3-1), (5-«0* (4.6), and- (4,7), 

we get 

(..14) p ^)eM. '-Iflif .p PV;*.^; f. 
o o 

0 ,0 1 

(».«)   /'I ^(x, - x)exp(- J)^ =/Tl p'i.;^,^)^ f. 
0 0 

Then, using equations (4.9), (4.10), and (4.15)-(4.16), 

we can write the emergent intensities I*(0,+ n) and I^f-,- n) 

in the forms 
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(4.17) I#(0,+ ^) - a/   1 P^Jt.Tj)^}} ^ 
0 

f Tl    / \    B2(T)      dt 

0 

(4.18) fiVy- >i) - a/'1 p'iWth)*^ ¥ 
0 

rTi •/ \ B2(T)   dt 

o 

From equations (4,1?) and (4.18) the emergent intenßities 

are given In terms of the diffusion matrix as followst 

1(0,+ [>) \ /tftH^ /I 0,+ P) \ /*@^A 
(4.19)       ■(   , J-^L  ,  J ' V

I(T]L,- M-K     ^ ^(TK 

where 

.so)     W)-^.   W-tffirrf 

In equation (4.19),  the diffusion matrix    D^    Is written in 

the form 

(4.21)       ^-(J   J), 

where the reflectance and the transmittance operators are 

(4.22)  7^(f(t)) -/Tl p(M.iti-r1)f(t)^ 

0 

(4.2?)   j^it)) -/Tl p*{m>vl)m$ljf'* 
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(4.24)      -^(f(t))   «/Tl  p*{Wl - t^T^fCt)^,     • 
0 

(^.25)      I^f(t)) -/ Tl pCn;^ - felT1)f(t)^ 
0 

Thus the Integral operational matrix «^ given by the 

prclnblllstlo method In the preceding paper [37] 1B now 

derived from the auxiliary equations and the first Integral 

equation of Milne. 

As a special cane, we shall consider the diffuse 

reflection and transmission of a parallel beam of radiation 

by a finite Inhomogeneous atmosphere. 

Let a parallel beam of radiation of Intrinsic flux P0 

fall on the surface T = 0 In the direction - |i0, and let a 

parallel beam of radiation of Intrinsic flux P1 fall on the 

surface -r « -^ in the direction + p.,. Then, recalling 

equation (4.20), 

'iexnr-^), L^T) --^exp^. L0(T) - TJ5 exp(- X)t    L^T) - a exp(- #-). 

and using equation (4.19), we determine that the emergent 

Intensities are given by 

T, 
(4.26)   ;(v,4 M.) - § F16(H - M.1)exp(- ^1) 

0 0 

+ ^/Tlp(^T1~T,T1)exp(-pl)f, 
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(4.27) I(T1#- n) - f P0«(li - H0)exp(- jji) 

0 0 

+ Tr/Tl P#^TI - T'Ti)exP<- ^if- 
0 

Writing 

(4.28) J    1 p(n;T,T1)ejcp(-l2-)dT - S(T1;n0,»i)f 

0 

(4.29) /   1 Pd^;^ - T,T1)exp(- jf-)dT » TCtjIIAj^), 
o " 

1 p (HJT1 - T>T1)exp(- ^)dt - S (^j^.n), 
0 '" '" 1' 

(4.51)       /   1 P*(^T,T1)exp(-^-)dT - /(T^JI^H), 
0 - o ' 

and allowing for the principle of reciprocity (cf.   [341)j  I.e., 

(4.52) 

we obtain 

S(T1;H,H0) " S(T1iH0,M.), 

S*(T1jM.iM.1) - S*(T1;n1,M.)f 

V^li*»^) " T*(T1;H0,M.), 

i T. 
(4.55)        1(0,+ H) - £ F16{V' - H1)exp(- ^i) 

+ ifg S(T1;H,H0) + ipp T (T^»*,^), 
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Ti. 

F F 

The emergent inten8ltJ,es (4.33) and (4.34) are equal to 

those given In the preceding ^aper [37]« Furthermore, If the 
« 

optical properties of the medium are constant throughout the 

atmosphere, the source functions P(|XJT,T.) and p (|XJT,T.) 

are equal respectively to p (M-iT, — T*TT) ^d pt^lf« — T,T.). 

In this case, the reflectance and transmlttance operators (4.22) 

and (4.23) i-educe to those yielded by Sobolev [27]« 
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